Navigare


Tabel cu derivate

Asteptati un moment. Formulele se incarca...
loading..
$$ (x)' = 1$$ $$ (x^n)' = nx^{n-1}$$ $$ \Big({1\over x}\Big)' = -{1\over x^2}$$ $$ \Big({1\over x^n}\Big)' = -{n\over x^{n+1}}$$ $$ (\sqrt{x})' = {1\over2\sqrt{x}}$$ $$ (\sin x)' = \cos x$$ $$ (\cos x)' = -\sin x$$ $$ (\tan x)' = {1\over\cos^2x} = 1 + \tan^2x$$ $$ (\cot x)' = {1\over\sin^2x}=-(1+\cot^2x)$$ $$ (\arcsin x)' = {1\over\sqrt{1-x^2}}$$ $$ (\arccos x)' = -{1\over\sqrt{1-x^2}}$$ $$ (\arctan x)' = {1\over 1+x^2}$$ $$ (\mathrm{arccot}\, x)' = -{1\over 1+x^2}$$ $$ (e^x)' = e^x$$ $$ (\mathrm{ln}\,x)' ={1\over x},a$$ $$ (a^x)' = a^x\mathrm{ln}\,a$$ $$ (\mathrm{log}_ax)' = {1\over x\mathrm{ln}a}$$
Reguli de derivare

$$1.\; (\alpha * f)' = \alpha * f' \; , \; \alpha \in R$$ $$2.\; (f\pm g)' = f' \pm g'$$ $$3.\; (f*g)' = f'*g + f*g'$$ $$4.\; (f*g*h)' = f'*g*h+f*g'*h+f*g*h'$$ $$5.\; (f^n)' = n*f^{n-1}*f'$$ $$6.\; (f \circ g)' = f'(g)*g'$$




Calculator derivate
Calculator integrale